Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
State Estimation for ­Robotics
Second Edition
By Timothy D. (University of Toronto)

Rating
Published
United Kingdom, 1 February 2024

A key aspect of robotics today is estimating the state (e.g., position and orientation) of a robot, based on noisy sensor data. This book targets students and practitioners of robotics by presenting classical state estimation methods (e.g., the Kalman filter) but also important modern topics such as batch estimation, Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. Since most robots operate in a three-dimensional world, common sensor models (e.g., camera, laser rangefinder) are provided followed by practical advice on how to carry out state estimation for rotational state variables. The book covers robotic applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Highlights of this expanded second edition include a new chapter on variational inference, a new section on inertial navigation, more introductory material on probability, and a primer on matrix calculus.


Our Price
£73.21
Ships from UK Estimated delivery date: 14th Apr - 16th Apr from UK

Buy Together
+
Buy together with Field and Service Robotics at a great price!
Buy Together
£201.21

Product Description

A key aspect of robotics today is estimating the state (e.g., position and orientation) of a robot, based on noisy sensor data. This book targets students and practitioners of robotics by presenting classical state estimation methods (e.g., the Kalman filter) but also important modern topics such as batch estimation, Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. Since most robots operate in a three-dimensional world, common sensor models (e.g., camera, laser rangefinder) are provided followed by practical advice on how to carry out state estimation for rotational state variables. The book covers robotic applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Highlights of this expanded second edition include a new chapter on variational inference, a new section on inertial navigation, more introductory material on probability, and a primer on matrix calculus.

Product Details
EAN
9781009299893
ISBN
1009299891
Writer
Dimensions
25.4 x 17.8 x 2.9 centimeters (0.82 kg)

Table of Contents

Acronyms and abbreviations; Notation; Foreword to first edition; Foreword to second edition; 1. Introduction; Part I. Estimation Machinery: 2. Primer on probability theory; 3. Linear-Gaussian estimation; 4. Nonlinear non-Gaussian estimation; 5. Handling nonidealities in estimation; 6. Variational inference; Part II. Three-Dimensional Machinery: 7. Primer on three-dimensional geometry; 8. Matrix lie groups; Part III. Applications: 9. Pose estimation problems; 10. Pose-and-point estimation problems; 11. Continuous-time estimation; Appendix A: matrix primer; Appendix B: rotation and pose extras; Appendix C: miscellaneous extras; Appendix D: solutions to exercises; References; Index.

Promotional Information

This modern look at state estimation now covers variational inference, adaptive covariance estimation, and inertial navigation.

About the Author

Timothy D. Barfoot is a Professor at the University of Toronto Institute for Aerospace Studies. He has been conducting research in the area of navigation of mobile robotics for over 20 years, both in industry and academia, for applications including space exploration, mining, military, and transportation. He is a Fellow of the IEEE Robotics and Automation Society.

Reviews

'This book provides a timely, concise, and well-scoped introduction to state estimation for robotics. It complements existing textbooks by giving a balanced presentation of estimation theoretic and geometric tools and discusses how these tools can be used to solve common estimation problems arising in robotics. It also strikes an excellent balance between theory and motivating examples.' Luca Carlone, IEEE Control Systems Magazine

Show more
Review this Product
Ask a Question About this Product More...
 
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.