Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Prognostics and Health ­Management of Electronics –­ Fundamentals, Machine ­Learning, and IoT

Rating
Format
Other digital, 800 pages
Other Formats Available

Hardback : £112.00

Published
United States, 24 August 2018

An indispensable guide for engineers and data scientists in design, testing, operation, manufacturing, and maintenance

A road map to the current challenges and available opportunities for the research and development of Prognostics and Health Management (PHM), this important work covers all areas of electronics and explains how to:

  • assess methods for damage estimation of components and systems due to field loading conditions
  • assess the cost and benefits of prognostic implementations
  • develop novel methods for in situ monitoring of products and systems in actual life-cycle conditions
  • enable condition-based (predictive) maintenance
  • increase system availability through an extension of maintenance cycles and/or timely repair actions;
  • obtain knowledge of load history for future design, qualification, and root cause analysis
  • reduce the occurrence of no fault found (NFF)
  • subtract life-cycle costs of equipment from reduction in inspection costs, downtime, and inventory

Prognostics and Health Management of Electronics also explains how to understand statistical techniques and machine learning methods used for diagnostics and prognostics. Using this valuable resource, electrical engineers, data scientists, and design engineers will be able to fully grasp the synergy between IoT, machine learning, and risk assessment.

Show more

This item is no longer available.

Product Description

An indispensable guide for engineers and data scientists in design, testing, operation, manufacturing, and maintenance

A road map to the current challenges and available opportunities for the research and development of Prognostics and Health Management (PHM), this important work covers all areas of electronics and explains how to:

Prognostics and Health Management of Electronics also explains how to understand statistical techniques and machine learning methods used for diagnostics and prognostics. Using this valuable resource, electrical engineers, data scientists, and design engineers will be able to fully grasp the synergy between IoT, machine learning, and risk assessment.

Show more
Product Details
EAN
9781119515326
ISBN
1119515327
Writer
Publisher
Age Range
Dimensions
25 x 15 x 1.5 centimeters (0.67 kg)

About the Author

MICHAEL G. PECHT, PHD, is Chair Professor in Mechanical Engineering and Professor in Applied Mathematics, Statistics and Scientific Computation at the University of Maryland, USA. He is the Founder and Director of the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland, USA, which is funded by more than 150 leading electronics companies. Dr. Pecht is an IEEE, ASME, SAE, and IMAPS Fellow and serves as editor-in-chief of IEEE Access. He has written more than 30 books, 700 technical articles, and has 8 patents.

MYEONGSU KANG, PHD, is currently a Research Associate at the Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, USA. His expertise is in data analytics, machine learning, system modeling, and statistics for prognostics and systems health management. He has authored/coauthored more than 60 publications in leading journals and conference proceedings.

Review this Product
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.