Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Numerical Methods for ­Nonlinear Estimating ­Equations
Oxford Statistical Science Series

Rating
Format
Hardback, 328 pages
Published
United Kingdom, 1 December 2003

Nonlinearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihoods for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which, when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modifications to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student.
This is the latest in the well-established and authoritative Oxford Statistical Science Series, which includes texts and monographs covering many topics of current research interest in pure and applied statistics. Each title has an original slant even if the material included is not specifically original. The authors are leading researchers and the topics covered will be of interest to all professional statisticians, whether they be in industry, government department or research institute. Other books in the series include 23. W.J.Krzanowski: Principles of multivariate analysis: a user's perspective updated edition 24. J.Durbin and S.J.Koopman: Time series analysis by State Space Models 25. Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, Scott L. Zeger: Analysis of Longitudinal Data 2/e 26. J.K. Lindsey: Nonlinear Models in Medical Statistics 27. Peter J. Green, Nils L. Hjort & Sylvia Richardson: Highly Structured Stochastic Systems 28. Margaret S. Pepe: The Statistical Evaluation of Medical Tests for Classification and Prediction.

Show more

Our Price
£165
Elsewhere
£185.00
Save £20.00 (11%)
Ships from UK Estimated delivery date: 10th Apr - 14th Apr from UK

Buy Together
+
Buy together with Compositional Data Analysis at a great price!
Buy Together
£241.91
Elsewhere Price
£248.95
You Save £7.04 (3%)

Product Description

Nonlinearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihoods for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which, when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modifications to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student.
This is the latest in the well-established and authoritative Oxford Statistical Science Series, which includes texts and monographs covering many topics of current research interest in pure and applied statistics. Each title has an original slant even if the material included is not specifically original. The authors are leading researchers and the topics covered will be of interest to all professional statisticians, whether they be in industry, government department or research institute. Other books in the series include 23. W.J.Krzanowski: Principles of multivariate analysis: a user's perspective updated edition 24. J.Durbin and S.J.Koopman: Time series analysis by State Space Models 25. Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, Scott L. Zeger: Analysis of Longitudinal Data 2/e 26. J.K. Lindsey: Nonlinear Models in Medical Statistics 27. Peter J. Green, Nils L. Hjort & Sylvia Richardson: Highly Structured Stochastic Systems 28. Margaret S. Pepe: The Statistical Evaluation of Medical Tests for Classification and Prediction.

Show more
Product Details
EAN
9780198506881
ISBN
0198506880
Other Information
5 colour plates, numerous figures and tables
Dimensions
24 x 16.3 x 2.2 centimeters (0.70 kg)

Table of Contents

Introduction
Estimating functions
Numerical algorithms
Working with roots
Methodologies for root selection
Artificial likelihoods and estimating functions
Root selection and dynamical systems
Bayesian estimating functions
Bibliography
Index

About the Author

Christopher G. Small is a Professor of Statistics at the University of Waterloo, Canada, and
has been Canada's official representative and Team Leader for the International
Mathematical Olympiad in Taiwan (1998) and Washington (2000). Jinfang Wang is an Associate Professor in Obihiro University.

Reviews

This book provides a comprehensive study of the solution of non-linear estimating equations arising in statistical inference.
*Mathematical Reviews*

Show more
Review this Product
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.