Part I: Fundamentals 1. MOF-based nanostructures and nanomaterials for next-generation energy storage: an introduction 2. Recent advances in MOFs for electrochemical energy storage and conversion devices 3. Design and construction of MOF nanomaterials 4. Strategies to enhance the electrochemical properties of MOFs 5. Biological MOFs (bio-MOFs) for energy applications
Part II: Metal-Organic frameworks for fuel cells 6. MOF-based electrocatalysts for oxygen evolution reactions 7. Recent development in MOFs for oxygen evolution reactions 8. Effect of structural modifications on the oxygen reduction reaction properties of metal-organic framework-based catalysts 9. Metal organic framework-based nanomaterials as suitable electrocatalysts for evolution of hydrogen
Part III: Metal-organic frameworks for batteries 10. MOF nanomaterials for battery cathodes 11. MOFs and their derivatives for anode of high-performance rechargeable batteries 12. Polyoxometalate-based metal organic frameworks (POMOFs) for lithium-ion batteries 13. MOFs-based nanomaterials for metal-sulfur batteries 14. MOFs-based nanomaterials for metal-ion batteries 15. MOF-based nanomaterials for zinc-based battery cathodes 16. MOF-based electrolytes for battery applications
Part IV: Metal-organic frameworks for supercapacitors 17. Recent development in MOFs for supercapacitor applications 18. MOFsemetal oxides/sulfides/phoshides nanocomposites for supercapacitors 19. MOFs-carbon nanocomposites for supercapacitors 20. Flexible supercapacitors based on nanocomposites of MOFs 21. Other nanocomposites of MOFs for supercapacitors
Part V: Metal-organic frameworks for photovoltaics 22. MOFs-based dye-sensitized photovoltaics 23. Recent development in MOFs for perovskite-based solar cells 24. Integrating MOFs into dye-sensitized solar cells 25. Integrating MOFs into dye-sensitized solar cells
Part VI: Metal-organic frameworks for fuel/gas storage 26. MOFs for hydrogen storage 27. Multicriteria decision making in organic-metal frameworks for fuel storage 28. Current development in MOFs for hydrogen storage: a mechanistic investigation 29. MOFs for solar photochemistry applications
Part VII: Metal-organic franeworks for other applications 30. Metal-organic frameworks for nanogenerators 31. MOF-based photocatalysts for hydrogen generation by water splitting 32. Metal-organic framework for photocatalytic reduction of carbon dioxide 33. MOF-based advanced nanomaterials for electrocatalysis applications
Show more
Part I: Fundamentals 1. MOF-based nanostructures and nanomaterials for next-generation energy storage: an introduction 2. Recent advances in MOFs for electrochemical energy storage and conversion devices 3. Design and construction of MOF nanomaterials 4. Strategies to enhance the electrochemical properties of MOFs 5. Biological MOFs (bio-MOFs) for energy applications
Part II: Metal-Organic frameworks for fuel cells 6. MOF-based electrocatalysts for oxygen evolution reactions 7. Recent development in MOFs for oxygen evolution reactions 8. Effect of structural modifications on the oxygen reduction reaction properties of metal-organic framework-based catalysts 9. Metal organic framework-based nanomaterials as suitable electrocatalysts for evolution of hydrogen
Part III: Metal-organic frameworks for batteries 10. MOF nanomaterials for battery cathodes 11. MOFs and their derivatives for anode of high-performance rechargeable batteries 12. Polyoxometalate-based metal organic frameworks (POMOFs) for lithium-ion batteries 13. MOFs-based nanomaterials for metal-sulfur batteries 14. MOFs-based nanomaterials for metal-ion batteries 15. MOF-based nanomaterials for zinc-based battery cathodes 16. MOF-based electrolytes for battery applications
Part IV: Metal-organic frameworks for supercapacitors 17. Recent development in MOFs for supercapacitor applications 18. MOFsemetal oxides/sulfides/phoshides nanocomposites for supercapacitors 19. MOFs-carbon nanocomposites for supercapacitors 20. Flexible supercapacitors based on nanocomposites of MOFs 21. Other nanocomposites of MOFs for supercapacitors
Part V: Metal-organic frameworks for photovoltaics 22. MOFs-based dye-sensitized photovoltaics 23. Recent development in MOFs for perovskite-based solar cells 24. Integrating MOFs into dye-sensitized solar cells 25. Integrating MOFs into dye-sensitized solar cells
Part VI: Metal-organic frameworks for fuel/gas storage 26. MOFs for hydrogen storage 27. Multicriteria decision making in organic-metal frameworks for fuel storage 28. Current development in MOFs for hydrogen storage: a mechanistic investigation 29. MOFs for solar photochemistry applications
Part VII: Metal-organic franeworks for other applications 30. Metal-organic frameworks for nanogenerators 31. MOF-based photocatalysts for hydrogen generation by water splitting 32. Metal-organic framework for photocatalytic reduction of carbon dioxide 33. MOF-based advanced nanomaterials for electrocatalysis applications
Show morePart I: Fundamentals
1. MOF-based nanostructures and nanomaterials for
next-generation
energy storage: an introduction
2. Recent advances in MOFs for electrochemical energy storage
and conversion devices
3. Design and construction of MOF nanomaterials
4. Strategies to enhance the electrochemical properties of MOFs
5. Biological MOFs (bio-MOFs) for energy applications
Part II: Metal-Organic frameworks for fuel cells
6. MOF-based electrocatalysts for oxygen evolution reactions
7. Recent development in MOFs for oxygen evolution reactions
8. Effect of structural modifications on the oxygen reduction
reaction properties of metal-organic framework-based catalysts
9. Metal organic framework-based nanomaterials as suitable
electrocatalysts for evolution of hydrogen
Part III: Metal-organic frameworks for batteries
10. MOF nanomaterials for battery cathodes
11. MOFs and their derivatives for anode of high-performance
rechargeable batteries
12. Polyoxometalate-based metal organic frameworks (POMOFs)
for lithium-ion batteries
13. MOFs-based nanomaterials for metal-sulfur batteries
14. MOFs-based nanomaterials for metal-ion batteries
15. MOF-based nanomaterials for zinc-based battery cathodes
16. MOF-based electrolytes for battery applications
Part IV: Metal-organic frameworks for supercapacitors
17. Recent development in MOFs for supercapacitor applications
18. MOFsemetal oxides/sulfides/phoshides nanocomposites for
supercapacitors
19. MOFs-carbon nanocomposites for supercapacitors
20. Flexible supercapacitors based on nanocomposites of MOFs
21. Other nanocomposites of MOFs for supercapacitors
Part V: Metal-organic frameworks for photovoltaics
22. MOFs-based dye-sensitized photovoltaics
23. Recent development in MOFs for perovskite-based solar cells
24. Integrating MOFs into dye-sensitized solar cells
25. Integrating MOFs into dye-sensitized solar cells
Part VI: Metal-organic frameworks for fuel/gas storage
26. MOFs for hydrogen storage
27. Multicriteria decision making in organic-metal frameworks for
fuel storage
28. Current development in MOFs for hydrogen storage: a mechanistic
investigation
29. MOFs for solar photochemistry applications
Part VII: Metal-organic franeworks for other applications
30. Metal-organic frameworks for nanogenerators
31. MOF-based photocatalysts for hydrogen generation by water
splitting
32. Metal-organic framework for photocatalytic reduction of carbon
dioxide
33. MOF-based advanced nanomaterials for electrocatalysis
applications
Ram K. Gupta is a Professor in the Department of Chemistry at Pittsburg State University, USA. His research interests include green energy production and storage using conducting polymers, 2D materials, nanostructured materials and composites, polymers from renewable resources for industrial applications, polymer recycling for sustainable future, bio-compatible nanofibers and thin films for tissue regeneration, scaffolds, bio-degradable metallic implants, and antibacterial applications. Tuan Anh Nguyen is a Senior Principal Research Scientist at the Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. He received a BS in physics from Hanoi University in 1992, a BS in economics from Hanoi National Economics University in 1997, and a PhD in chemistry from the Paris Diderot University, France, in 2003. He was a Visiting Scientist at Seoul National University, South Korea, in 2004, and the University of Wollongong, Australia, in 2005. He then worked as a Postdoctoral Research Associate and Research Scientist at Montana State University, United States in 2006-09. In 2012 he was appointed as the Head of the Microanalysis Department at the Institute for Tropical Technology. His research areas of interest include smart sensors, smart networks, smart hospitals, smart cities, complexiverse, and digital twins. He has edited more than 74 books for Elsevier, 12 books for CRC Press, 1 book for Springer, 1 book for RSC, and 2 books for IGI Global. He is the Editor-in-Chief of Kenkyu Journal of Nanotechnology & Nanoscience. Ghulam Yasin is a researcher in the School of Environment and Civil Engineering at Dongguan University of Technology, Guangdong, China. His expertise covers the design and development of hybrid devices and technologies of carbon nanostructures and advanced nanomaterials for for real-world impact in energy-related and other functional applications.
![]() |
Ask a Question About this Product More... |
![]() |