Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Machine Learning with ­Python Cookbook
Practical solutions from preprocessing to deep learning

Rating
75 Ratings by Goodreads
Already own it? Write a review
Format
Paperback, 366 pages
Published
United States, 23 March 2018

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics.

Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications.

You'll find recipes for:

Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and neural networks Saving and loading trained models

Show more

This item is no longer available.

Product Description

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics.

Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications.

You'll find recipes for:

Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naive Bayes, clustering, and neural networks Saving and loading trained models

Show more
Product Details
EAN
9781491989388
ISBN
1491989386
Publisher
Dimensions
17.8 x 1.8 x 23.1 centimeters (0.66 kg)

About the Author

Chris Albon is data scientist with a Ph.D. in quantitative political science and a decade of experience working in statistical learning, artificial intelligence, and software engineering. He founded New Knowledge, an artificial intelligence company, and previously worked for the crisis and humanitarian non-profit, Ushahidi. Chris also founded and co-hosts of the data science podcast, Partially Derivative.

Review this Product
Ask a Question About this Product More...
 
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.