Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Finite-Dimensional Vector ­Spaces
Undergraduate Texts in Mathematics

Rating
1 Rating |
Already own it? Write a review
Format
Hardback, 212 pages
Other Formats Available

Paperback : £40.05

Published
United States, 1 August 1993

"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other modern textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher." - Zentralblatt fur Mathematik.


Our Price
£46.21
Ships from UK Estimated delivery date: 11th Apr - 15th Apr from UK

Buy Together
+
Buy together with Linear Algebra at a great price!
Buy Together
£101.07

Product Description

"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other modern textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher." - Zentralblatt fur Mathematik.

Product Details
EAN
9780387900933
ISBN
0387900934
Dimensions
23.6 x 16.5 x 2 centimeters (0.48 kg)

Table of Contents

I. Spaces.- 1. Fields.- 2. Vector spaces.- 3. Examples.- 4. Comments.- 5. Linear dependence.- 6. Linear combinations.- 7. Bases.- 8. Dimension.- 9. Isomorphism.- 10. Subspaces.- 11. Calculus of subspaces.- 12. Dimension of a subspace.- 13. Dual spaces.- 14. Brackets.- 15. Dual bases.- 16. Reflexivity.- 17. Annihilators.- 18. Direct sums.- 19. Dimension of a direct sum.- 20. Dual of a direct sum.- 21. Quotient spaces.- 22. Dimension of a quotient space.- 23. Bilinear forms.- 24. Tensor products.- 25. Product bases.- 26. Permutations.- 27. Cycles.- 28. Parity.- 29. Multilinear forms.- 30. Alternating forms.- 31. Alternating forms of maximal degree.- II. Transformations.- 32. Linear transformations.- 33. Transformations as vectors.- 34. Products.- 35. Polynomials.- 36. Inverses.- 37. Matrices.- 38. Matrices of transformations.- 39. Invariance.- 40. Reducibility.- 41. Projections.- 42. Combinations of pro¬jections.- 43. Projections and invariance.- 44. Adjoints.- 45. Adjoints of projections.- 46. Change of basis.- 47. Similarity.- 48. Quotient transformations.- 49. Range and null-space.- 50. Rank and nullity.- 51. Transformations of rank one.- 52. Tensor products of transformations.- 53. Determinants.- 54. Proper values.- 55. Multiplicity.- 56. Triangular form.- 57. Nilpotence.- 58. Jordan form.- III. Orthogonality.- 59. Inner products.- 60. Complex inner products.- 61. Inner product spaces.- 62. Orthogonality.- 63. Completeness.- 64. Schwarz’s inequality.- 65. Complete orthonormal sets.- 66. Projection theorem.- 67. Linear functionals.- 68. Parentheses versus brackets.- 69. Natural isomorphisms.- 70. Self-adjoint transformations.- 71. Polarization.- 72. Positive transformations.- 73. Isometries.- 74. Change of orthonormal basis.- 75. Perpendicular projections.- 76. Combinations of perpendicular projections.- 77. Complexification.- 78. Characterization of spectra.- 79. Spectral theorem.- 80. Normal transformations.- 81. Orthogonal transformations.- 82. Functions of transformations.- 83. Polar decomposition.- 84. Commutativity.- 85. Self-adjoint transformations of rank one.- IV. Analysis.- 86. Convergence of vectors.- 87. Norm.- 88. Expressions for the norm.- 89. Bounds of a self-adjoint transformation.- 90. Minimax principle.- 91. Convergence of linear transformations.- 92. Ergodic theorem.- 93. Power series.- Appendix. Hilbert Space.- Recommended Reading.- Index of Terms.- Index of Symbols.

Reviews

"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher." Zentralblatt fur Mathematik

Show more
Customer Reviews
5 out of 5 | From 1 Customer Ratings

Top Customer Reviews
All reviews
1
5 Stars
1
4 Stars
0
3 Stars
0
2 Stars
0
1 Star
0
Top Customer Reviews
Sort by
By Michael on July 28, 2013
This book is one of my favourite Mathematics books. Paul Halmos simply shines brightly with his ability to explain linear algebra of finite-dimensional vector spaces. I recommend this book highly to anyone on their journey to discover one of the basic topics, to be learnt, before studying higher level subjects in Pure Mathematics. Good Luck to everyone who reads this text! Michael Robertson NSW Australia
Was this review helpful? Yes   No
Write a review
Ask a Question About this Product More...
 
Look for similar items by category
Home » Books » Science » Mathematics » Algebra » Linear
Home » Books » Science » Mathematics » Algebra » General
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.