Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Debugging Systems-on-Chip
Communication-centric and Abstraction-based Techniques (Embedded Systems)

Rating
Format
Paperback, 311 pages
Other Formats Available

Hardback : £88.64

Published
Switzerland, 1 October 2016

This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly. Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors. The authors' novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug flow to be used during the design of an SOC, and customizable off-chip debugger software. Coverage includes an evaluation of the efficiency and effectiveness of the CSAR approach and its supporting infrastructure, using six industrial SOCs and an illustrative, example SOC model. The authors also quantify the hardware cost and design effort to support their approach.

 



Bart Vermeulen received his MSc and PhD degrees in Electrical Engineering from the Eindhoven University of Technology in respectively 1997 and 2013. He is currently a Senior Principal in the Central Research and Development organization of NXP Semiconductors, The Netherlands. His research interests include the design, validation and test of robust, distributed architectures for embedded systems. He published 40+ papers and 8 patents.


Kees Goossens received his PhD in Computer Science from the University of Edinburgh in 1993 on hardware verification using embeddings of formal semantics of hardware description languages in proof systems. He worked for Philips/NXP Research from 1995 to 2010 on networks on chip for consumer electronics. He is professor at the Eindhoven University of Technology, where his research focusses on composable, predictable, low-power embedded systems. He published 2 books, 100+ papers and 24 patents.

Show more

Our Price
£90.47
Ships from UK Estimated delivery date: 9th Apr - 11th Apr from UK

Buy Together
+
Buy together with On-Chip Interconnect with aelite at a great price!
Buy Together
£218.47

Product Description

This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly. Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors. The authors' novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug flow to be used during the design of an SOC, and customizable off-chip debugger software. Coverage includes an evaluation of the efficiency and effectiveness of the CSAR approach and its supporting infrastructure, using six industrial SOCs and an illustrative, example SOC model. The authors also quantify the hardware cost and design effort to support their approach.

 



Bart Vermeulen received his MSc and PhD degrees in Electrical Engineering from the Eindhoven University of Technology in respectively 1997 and 2013. He is currently a Senior Principal in the Central Research and Development organization of NXP Semiconductors, The Netherlands. His research interests include the design, validation and test of robust, distributed architectures for embedded systems. He published 40+ papers and 8 patents.


Kees Goossens received his PhD in Computer Science from the University of Edinburgh in 1993 on hardware verification using embeddings of formal semantics of hardware description languages in proof systems. He worked for Philips/NXP Research from 1995 to 2010 on networks on chip for consumer electronics. He is professor at the Eindhoven University of Technology, where his research focusses on composable, predictable, low-power embedded systems. He published 2 books, 100+ papers and 24 patents.

Show more
Product Details
EAN
9783319356921
ISBN
3319356925
Other Information
34 Tables, black and white; 7 Illustrations, color; 120 Illustrations, black and white; XV, 311 p. 127 illus., 7 illus. in color.
Dimensions
23.4 x 15.6 x 1.8 centimeters (4.98 kg)

Table of Contents

Part I Introduction.- Introduction.- Part II The Complexity of debugging system chips.- Post-silicon debugging of a single building block.- Post-silicon debugging of multiple building blocks.- Part III The CSAR debug approach.- CSAR debug overview.- On-chip debug architecture.- Design-for-Debug flow.- Off-chip debugger software.- Part IV Case studies.- Case studies.- Part V Related work, conclusion, and future work.- Related work.- Conclusion and future work.

About the Author

Bart Vermeulen received his MSc and PhD degrees in Electrical Engineering from the Eindhoven University of Technology in respectively 1997 and 2013. He is currently a Senior Principal in the Central Research and Development organization of NXP Semiconductors, The Netherlands. His research interests include the design, validation and test of robust, distributed architectures for embedded systems. He published 40+ papers and 8 patents.

Kees Goossens received his PhD in Computer Science from the University of Edinburgh in 1993 on hardware verification using embeddings of formal semantics of hardware description languages in proof systems. He worked for Philips/NXP Research from 1995 to 2010 on networks on chip for consumer electronics. He is professor at the Eindhoven University of Technology, where his research focusses on composable, predictable, low-power embedded systems. He published 2 books, 100+ papers and 24 patents.

Show more
Review this Product
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.