Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Data Augmentation with ­Python
Enhance accuracy in Deep Learning with practical Data Augmentation for image, text, audio & tabular data

Rating
Format
Paperback, 394 pages
Published
United Kingdom, 1 April 2023

Boost your AI and generative AI accuracy using real-world datasets with over 150 functional object-oriented methods and open source libraries
Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Explore beautiful, customized charts and infographics in full color
Work with fully functional OO code using open source libraries in the Python Notebook for each chapter
Unleash the potential of real-world datasets with practical data augmentation techniques

Book DescriptionData is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset.
The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You’ll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you’ll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges.
By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques.What you will learn

Write OOP Python code for image, text, audio, and tabular data
Access over 150,000 real-world datasets from the Kaggle website
Analyze biases and safe parameters for each augmentation method
Visualize data using standard and exotic plots in color
Discover 32 advanced open source augmentation libraries
Explore machine learning models, such as BERT and Transformer
Meet Pluto, an imaginary digital coding companion
Extend your learning with fun facts and fun challenges

Who this book is forThis book is for data scientists and students interested in the AI discipline. Advanced AI or deep learning skills are not required; however, knowledge of Python programming and familiarity with Jupyter Notebooks are essential to understanding the topics covered in this book.

Show more

Our Price
£32
Ships from UK Estimated delivery date: 29th Apr - 1st May from UK

Buy Together
+
Buy together with Practical Deep Learning with Python at a great price!
Buy Together
£83.38
Elsewhere Price
£93.99
You Save £10.61 (11%)

Product Description

Boost your AI and generative AI accuracy using real-world datasets with over 150 functional object-oriented methods and open source libraries
Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Explore beautiful, customized charts and infographics in full color
Work with fully functional OO code using open source libraries in the Python Notebook for each chapter
Unleash the potential of real-world datasets with practical data augmentation techniques

Book DescriptionData is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset.
The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You’ll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you’ll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges.
By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques.What you will learn

Write OOP Python code for image, text, audio, and tabular data
Access over 150,000 real-world datasets from the Kaggle website
Analyze biases and safe parameters for each augmentation method
Visualize data using standard and exotic plots in color
Discover 32 advanced open source augmentation libraries
Explore machine learning models, such as BERT and Transformer
Meet Pluto, an imaginary digital coding companion
Extend your learning with fun facts and fun challenges

Who this book is forThis book is for data scientists and students interested in the AI discipline. Advanced AI or deep learning skills are not required; however, knowledge of Python programming and familiarity with Jupyter Notebooks are essential to understanding the topics covered in this book.

Show more
Product Details
EAN
9781803246451
ISBN
1803246456
Writer
Dimensions
23.5 x 19.1 x 2.1 centimeters (0.68 kg)

Table of Contents

Table of Contents

  • Data Augmentation Made Easy
  • Biases in Data Augmentation
  • Image Augmentation for Classification
  • Image Augmentation for Segmentation
  • Text Augmentation
  • Text Augmentation with Machine Learning
  • Audio Data Augmentation
  • Audio Data Augmentation with Spectrogram
  • Tabular Data Augmentation
  • About the Author

    Mr. Duc Haba is a lifelong technologist and researcher specializing in Deep Learning and Generative AI. He has been a programmer, Enterprise Mobility Solution Architect, AI Solution Architect, Principal, VP, CTO, and CEO. The companies range from startups and IPOs to enterprise companies.
    Duc’s career started with Xerox Palo Alto Research Center (PARC), researching expert systems (ruled-based) for Xerox copier diagnostics. After PARC, he joined Oracle, following Viant Consulting as a founding member. He jumped headfirst into the entrepreneurial culture in Silicon Valley. There were slightly more failures than successes, but the highlights are working with Oracle, Viant, and RRKidz. Currently, he is happy working at YML as the AI Solution Architect.

    Show more
    Review this Product
    Ask a Question About this Product More...
     
    Item ships from and is sold by Fishpond World Ltd.

    Back to top
    We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.