Paperback : £54.91
This new text/reference presents an accessible, concise, but rather complete, introduction to the C++ programming language with special emphasis on object-oriented numeric computation for scientific and engineering program development. The description of the language is in compliance with ISO/ANSI standards and is platform independent for maximum versatility. Requiring only basic calculus and linear algebra as prerequisites, the book introduces concepts, techniques, and standard libraries of C++ in a manner that is easy to understand and uses such familiar examples as vectors, matrices, integrals, and complex numbers. It also contains an introduction to C++ programs for applications with many numberic methods that are fundamental to science and engineering computing: polynomial evaluation and interpolation; numeric integration; methods for solving nonlinear equations; systems of linear equations in full, band, and sparse matrix storage formats; and ordinary and partial differential equations. Numerous techniques and examples are provided on how to reduce (C and Fortran) run-time overhead and improve program efficiency. Following are the topics and features: concise coverage of C++ programming concepts with object-oriented emphasis; numerous examples, coding tools, sample programs and exercises for reinforcement and self-study purposes; develops and uses basic and advanced features, as well as standard libraries of C++; covers many fundamental numeric methods for scientific and engineering computing applications; and, downloadable user-defined numeric linear algebra library available from author web site. With an accessible style, intuitive topic development, and numerous examples, the book is an excellent resource and guide to the power, versatility and efficiency of C++ programming for numeric computing applications. Advanced students, practitioners and professionals in computer science, engineering and scientific computing in general will find the book a practical guide and resource for their work and applications program development.
Show moreThis new text/reference presents an accessible, concise, but rather complete, introduction to the C++ programming language with special emphasis on object-oriented numeric computation for scientific and engineering program development. The description of the language is in compliance with ISO/ANSI standards and is platform independent for maximum versatility. Requiring only basic calculus and linear algebra as prerequisites, the book introduces concepts, techniques, and standard libraries of C++ in a manner that is easy to understand and uses such familiar examples as vectors, matrices, integrals, and complex numbers. It also contains an introduction to C++ programs for applications with many numberic methods that are fundamental to science and engineering computing: polynomial evaluation and interpolation; numeric integration; methods for solving nonlinear equations; systems of linear equations in full, band, and sparse matrix storage formats; and ordinary and partial differential equations. Numerous techniques and examples are provided on how to reduce (C and Fortran) run-time overhead and improve program efficiency. Following are the topics and features: concise coverage of C++ programming concepts with object-oriented emphasis; numerous examples, coding tools, sample programs and exercises for reinforcement and self-study purposes; develops and uses basic and advanced features, as well as standard libraries of C++; covers many fundamental numeric methods for scientific and engineering computing applications; and, downloadable user-defined numeric linear algebra library available from author web site. With an accessible style, intuitive topic development, and numerous examples, the book is an excellent resource and guide to the power, versatility and efficiency of C++ programming for numeric computing applications. Advanced students, practitioners and professionals in computer science, engineering and scientific computing in general will find the book a practical guide and resource for their work and applications program development.
Show more1 Basic Types.- 1.1 A Sample Program.- 1.2 Types and Declarations.- 1.3 Basic Types.- 1.4 Numeric Limits.- 1.5 Identifiers and Keywords.- 1.6 Exercises.- 2 Expressions and Statements.- 2.1 Scopes and Storage Classifications.- 2.2 Expressions.- 2.3 Statements.- 2.4 Fibonacci Number.- 2.5 Exercises.- 3 Derived Types.- 3.1 Constants and Macros.- 3.2 Enumerations.- 3.3 Arrays.- 3.4 Structures.- 3.5 Unions and Bit Fields.- 3.6 Pointers.- 3.7 References.- 3.8 Functions.- 3.9 Program Execution.- 3.10 Operator Summary and Precedence.- 3.11 Standard Library on Mathematical Functions.- 3.12 Polynomial Evaluation.- 3.13 Trapezoidal and Simpson’s Rules.- 3.14 Exercises.- 4 Namespaces and Files.- 4.1 Namespaces.- 4.2 Include Files.- 4.3 Source Files and Linkages.- 4.4 Some Useful Tools.- 4.5 Standard Library on Strings.- 4.6 Standard Library on Streams.- 4.7 Iterative Methods for Nonlinear Equations.- 4.8 Exercises.- 5 Classes.- 5.1 Class Declarations and Definitions.- 5.2 Copy Constructors and Copy Assignments.- 5.3 Friends.- 5.4 Static Members.- 5.5 Constant and Mutable Members.- 5.6 Class Objects as Members.- 5.7 Array of Classes.- 5.8 Pointers to Members.- 5.9 Numeric Methods for Ordinary Differential Equations.- 5.10 Exercises.- 6 Operator Overloading.- 6.1 Complex Numbers.- 6.2 Operator Functions.- 6.3 Vectors and Matrices.- 6.4 Explicit and Implicit Conversions.- 6.5 Efficiency and Operator Overloading.- 6.6 Conjugate Gradient Algorithm.- 6.7 Exercises.- 7 Templates.- 7.1 Class Templates.- 7.2 Function Templates.- 7.3 Template Source Code Organization.- 7.4 Standard Library on Complex Numbers.- 7.5 Standard Library on valarrays.- 7.6 Standard Library on Numeric Algorithms.- 7.7 Efficient Techniques for Numeric Integration.- 7.8 Polynomial Interpolation.- 7.9 Exercises.- 8Class Inheritance.- 8.1 Derived Classes.- 8.2 Abstract Classes.- 8.3 Access Control.- 8.4 Multiple Inheritance.- 8.5 Run-Time Type Information.- 8.6 Replacing Virtual Functions by Static Polymorphism.- 8.7 Exercises.- 9 Exception Handling.- 9.1 Throw and Catch.- 9.2 Deriving Exceptions.- 9.3 Catching Exceptions.- 9.4 Specifying Exceptions in Functions.- 9.5 Standard Exceptions.- 9.6 Exercises.- 10 Standard Libraries on Containers and Algorithms.- 10.1 Standard Containers.- 10.2 Standard Algorithms.- 10.3 Standard Function Objects and Adaptors.- 10.4 Exercises.- 11 Linear System Solvers.- 11.1 Matrix Storage Formats.- 11.2 A Class Hierarchy for Matrices.- 11.3 Iterative Algorithms.- 11.4 Gauss Elimination.- 11.5 Finite Difference Method for Partial Differential Equations.- 11.6 Exercises.- References.
Springer Book Archives
¿This is one of the few good application-oriented C++ books that I have come across for students and professionals in mathematics, science, and engineering....Yang makes it attractive to all professionals in these fields and promotes the use of good objects-oriented programming practices....This book is complete and well written....it can promote good design practices amoud students in science and engineering. Its precision can make it a valuable reference for professionals in these areas.¿¿ACM COMPUTER REVIEWS
![]() |
Ask a Question About this Product More... |
![]() |