Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Building Services ­Engineering - Smart and ­Sustainable Design for ­Health and Wellbeing

Rating
Format
Hardback, 400 pages
Published
United States, 18 February 2021

Preface xiii Structure of the Book xv Notation xxi 1 Ambient Air1 1.1 Overview 1 Learning Outcomes 1 1.2 Why Ambient Air Is Important? 1 1.3 Air Composition 2 1.4 Gas Mixtures 3 1.4.1 Mixture Laws 3 1.4.2 Dalton's Law 4 1.4.3 Gibbs-Dalton Law 5 1.4.4 Ideal Gas Behaviour and the Equation of State 6 1.5 Air Thermodynamic and Transport Properties 7 1.5.1 Gas Density 7 1.5.2 Dynamic Viscosity 7 1.5.3 Specific Heat Capacity 9 1.5.4 Thermal Conductivity 10 1.5.5 Heat Transfer Coefficient 10 1.5.6 Combinations of Properties 11 1.6 Important Energy Concepts 12 1.6.1 First Law of Thermodynamics 12 1.6.2 Thermal Energy 13 1.6.3 Rate of Thermodynamic Work 14 1.6.4 Nonthermal Energy 14 1.6.5 Non-flow Conditions 15 1.6.6 Entropy 15 1.7 Worked Examples 16 1.8 Tutorial Problems 21 2 The Thermodynamics of the Human Machine and Thermal Comfort 25 2.1 Overview 25 Learning Outcomes 25 2.2 Thermal Comfort of Human Beings 26 2.3 Energy Balance of the Human Body 26 2.4 Metabolism ( M) and Physical Work ( W) 27 2.4.1 Latent Heat Loss 28 2.4.1.1 Heat Loss by Perspiration 28 2.4.1.2 Heat Loss by Respiration 29 2.4.2 Sensible Heat Loss 29 2.4.2.1 Heat Loss by Conduction 29 2.4.2.2 Heat Loss by Convection 30 2.4.2.3 Heat Loss by Radiation 30 2.5 Optimum Comfort Temperature 31 2.6 Estimation of Thermal Comfort 31 2.7 Worked Examples 33 2.8 Tutorial Problems 41 3 Ventilation 45 3.1 Overview 45 Learning Outcomes 45 3.2 Concentrations, Contaminants, and the Decay Equation 46 3.2.1 Concentrations 46 3.2.2 The Decay Equation 47 3.3 Natural Ventilation 48 3.3.1 Stack Effect Ventilation 48 3.3.2 Wind Effect Ventilation 50 3.3.3 Combined Wind and Stack Effect Ventilation 51 3.3.4 Infiltration 52 3.4 Mechanical Ventilation 52 3.5 Fan Types and Selection 53 3.5.1 Selection of Fans 54 3.6 Duct Sizing and Fan Matching 56 3.6.1 Duct Pressure Losses 56 3.6.2 Selecting Duct Sizes 57 3.6.3 Fan Sizing 60 3.6.4 Fan-System Characteristics and Matching 61 3.6.5 Fan Laws 62 3.7 Worked Examples 63 3.8 Tutorial Problems 73 4 Psychrometry and Air Conditioning 75 4.1 Overview 75 Learning Outcomes 75 4.2 Psychrometric Properties 75 4.2.1 Pressure 75 4.2.2 Temperature 76 4.2.3 Water Content 76 4.2.4 Condensation 77 4.2.5 Energy Content 77 4.2.6 Mass Flow and Volume 78 4.3 The Psychrometric Chart 78 4.4 Air-Conditioning Processes 80 4.5 Air-Conditioning Cycles 86 4.5.1 Air-Conditioning Plant Variations 87 4.6 Worked Examples 91 4.7 Tutorial Problems 103 5 The Building Envelope 107 5.1 Overview 107 Learning Outcomes 107 5.2 Variation in Meteorological Conditions 107 5.2.1 Temperature and Humidity 108 5.2.2 Wind 108 5.2.3 Solar Irradiation 108 5.3 Heat Transfer 109 5.3.1 Conduction 109 5.3.2 Convection 111 5.3.3 Radiation 112 5.4 Solar Irradiation 113 5.4.1 Solar Time 114 5.4.2 Solar Angles 115 5.4.3 Surface Irradiation 117 5.5 Heat Losses/Gains Across the Envelope 118 5.5.1 Opaque Elements, i.e. Walls, Doors, Roofs, Floors, and Cavities 118 5.5.2 Transparent Elements, i.e. Windows, Roof Lights, Light Wells, Atria 119 5.5.3 Unsteady State Heat Transfer 122 5.6 Moisture and Air Transfer 125 5.6.1 Water Vapour Generation and Control 125 5.6.2 Vapour Pressure Gradients and Moisture Transfer 125 5.6.3 Prediction of Interstitial Building Fabric Condensation 126 5.6.4 Air Transfer 127 5.7 Internal Heat Gains 128 5.8 Worked Examples 128 5.9 Tutorial Problems 139 6 Refrigeration and Heat Pumps 143 6.1 Overview 143 Learning Outcomes 143 6.2 Choice of Refrigerants 144 6.2.1 Choice of Refrigerant for Vapour Compression Systems 146 6.2.2 Choice of Refrigerant-Absorbent Pairings for Vapour Absorption Systems 147 6.3 Heat Pump, Refrigeration, and Vapour Compression Cycles 147 6.3.1 Carnot Cycle 149 6.3.2 Ideal Vapour Compression Refrigeration Cycle 150 6.3.3 Practical Vapour Compression Refrigeration Cycle 151 6.3.4 Irreversibilities in Vapour Compression Refrigeration Cycles 152 6.3.5 Multistage-Vapour Compression Refrigeration 152 6.3.6 Multipurpose Refrigeration Systems with a Single Compressor 154 6.4 Absorption Refrigeration 155 6.4.1 Thermodynamic analysis 157 6.5 Adsorption Refrigeration 159 6.6 Stirling Cycle Refrigeration 159 6.7 Reverse Brayton-Air Refrigeration Cycle 162 6.8 Steam Jet Refrigeration Cycle 163 6.9 Thermoelectric Refrigeration 165 6.10 Thermoacoustic Refrigeration 166 6.11 Worked Examples 167 6.12 Tutorial Problems 179 7 Acoustic Factors 185 7.1 Overview 185 Learning Outcomes 185 7.2 The Human Ear 185 7.3 SoundWaves 187 7.3.1 Wave Motion 187 7.3.2 Wave Characteristics 189 7.4 Power, Intensity, and Pressure 190 7.4.1 The Bel 190 7.4.2 Sound Levels 190 7.4.2.1 Sound Power Level (LW) 190 7.4.2.2 Sound Intensity Level (LI ) 191 7.4.2.3 Sound Pressure Level (Lp) 191 7.4.2.4 Sound-Level Interrelationships 192 7.5 Laws of Sound Combination 193 7.6 Sound Propagation 193 7.6.1 Sound Attenuation 194 7.7 Sound Fields 199 7.7.1 Free Field 200 7.7.2 Diffuse Field 200 7.7.3 Far-Field 201 7.7.4 Near Field 201 7.8 Acoustic Pollution or Noise 201 7.8.1 Effect on Humans 202 7.8.2 Noise Standards 202 7.9 Worked Examples 203 7.10 Tutorial Problems 208 8 Visual Factors 211 8.1 Overview 211 Learning Outcomes 211 8.2 The Human Eye 211 8.3 Light Sources and Receivers 212 8.4 Laws of Illumination 215 8.5 Lamp Types 217 8.5.1 Light-Emitting Diodes (LEDs) 218 8.5.2 Gas/Vapour Discharge Lamps 218 8.5.2.1 Tubular Fluorescents 218 8.5.2.2 Metal Vapour/Metal Halide Lamps 218 8.5.2.3 Sodium Lamps 219 8.5.3 Incandescent Lamps 220 8.5.3.1 Tungsten Filament 220 8.5.3.2 Tungsten Halogen Lamps 220 8.5.4 Luminous Efficacy 221 8.6 Luminaires and Directional Control 222 8.6.1 Reflection 222 8.6.2 Refraction 222 8.6.3 Diffusion 223 8.6.4 Directional Performance Ratios 223 8.6.5 Lumen Method 224 8.6.6 Glare 225 8.7 Worked Examples 226 8.8 Tutorial Problems 232 9 Cleaning the Air 235 9.1 Overview 235 Learning Outcomes 235 9.2 Concentration and Exposure 236 9.2.1 Concentration Conversions 236 9.2.2 Pollutant Exposure 236 9.3 Particulate Pollution 236 9.3.1 Nature of Particulates 236 9.3.2 Stokes Law and Terminal Velocity 237 9.4 Principles of Particulate Collection 240 9.4.1 Collection Surfaces 240 9.4.2 Collection Devices 241 9.4.3 Fractional Collection Efficiency 242 9.5 Control Technologies 242 9.5.1 Gravity Settlers 243 9.5.1.1 Model 1: Unmixed Flow Model 243 9.5.1.2 Model 2: Well-Mixed Flow Model 244 9.5.2 Centrifugal Separators or Cyclones 246 9.5.3 Electrostatic Precipitators (ESPs) 250 9.5.4 Fabric Filters 254 9.6 Non-particulate Pollutants 257 9.6.1 Oxides of Nitrogen (NOx, NO, NO2) 257 9.6.2 Ozone (O3) 257 9.6.3 Volatile Organic Compounds (VOCs) 258 9.6.4 Radon 258 9.6.5 Carbon Monoxide (CO) 258 9.6.6 Micro-organisms 259 9.7 Principles of Non-particulate Collection 259 9.7.1 Adsorption 259 9.7.2 Ultraviolet Technologies 259 9.7.3 Plasma Cleaning 260 9.8 Pressure Drop Considerations 260 9.9 Worked Examples 261 9.10 Tutorial Problems 268 10 Solar Energy Applications 271 10.1 Overview 271 Learning Outcomes 271 10.2 Solar Thermal Collector Technologies 271 10.2.1 Flat-Plate Glazed Collectors 271 10.2.2 Evacuated Tube Collectors 272 10.2.3 Solar Thermal Collector Efficiency (etac) 273 10.2.4 Solar Thermal Air Heaters 275 10.3 Solar Electricity 276 10.3.1 Photovoltaic (PV) Cells 277 10.3.2 PV Cell Shading 278 10.3.3 PV Energy Production 279 10.4 Ground-Based Energy Sources 279 10.4.1 Direct Ground Heating/Cooling 281 10.4.2 Ground Source Heat Pumps (GSHPs) 281 10.5 Energy Storage 281 10.5.1 Thermal Energy Storage 281 10.5.1.1 Sensible Heat Storage 282 10.5.1.2 Latent Heat Storage 283 10.5.2 Electrical Energy Storage 284 10.5.3 Battery Technologies 286 10.6 Daylighting 288 10.7 Worked Examples 289 10.8 Tutorial Problems 297 11 Measurements and Monitoring 301 11.1 Overview 301 Learning Outcomes 301 11.2 Compositional Parameters 302 11.2.1 Gaseous Concentration Measurement 302 11.2.1.1 Matter-Photon Interaction 302 11.2.2 Particulates Concentration Measurement 303 11.3 Physical Parameters 303 11.3.1 Pressure Measurement Principles 303 11.3.2 Temperature Measurement Principles 304 11.3.2.1 Resistance Thermometers 306 11.3.2.2 Thermocouples 306 11.3.2.3 Thermistor 307 11.3.3 Humidity Measurement Principles 309 11.3.3.1 Wet- and Dry-Bulb Hygrometer (Relative humidity) 310 11.3.4 Velocity Measurement Principles 311 11.3.4.1 Differential Pressure Meters 311 11.3.4.2 Anemometers 312 11.3.4.3 Optical Methods 313 11.4 Visual and Aural Parameters 314 11.4.1 Light Measurement Principles 314 11.4.2 Sound Measurement Principles 314 11.5 Utility Measurement and Metering 315 11.5.1 Electricity Metering 315 11.5.2 Gas Metering 316 11.5.3 Water Flow Metering 317 11.5.4 Heat Metering 320 11.5.5 Energy and Building Management Systems 321 11.6 Worked Examples 321 11.7 Tutorial Problems 327 12 Drivers, Standards, and Methodologies 331 12.1 Overview 331 Learning Outcomes 331 12.2 Compliance Considerations 332 12.2.1 Energy Performance of Buildings (EPB) Standards and the Energy Performance of Buildings Directive (EPBD) 332 12.2.2 UK Building Regulations and Approved Documents 333 12.2.3 SAP, RdSAP, and SBEM (UK) 333 12.2.4 Energy Performance Certificates (EPCs) 334 12.2.5 Ecodesign and Energy Related Products (ErP) 335 12.2.6 Lamp and Lighting Standards 335 12.2.7 Noise Standards 335 12.2.8 Indoor Environmental Design Parameters 336 12.3 External Certification and Recognition 336 12.3.1 BREEAM 336 12.3.2 Passivhaus 337 12.3.3 WELL Standards 338 12.3.4 LEED Leadership in Energy and Environmental Design 338 12.4 Operational Considerations 338 12.4.1 Post Occupancy Evaluation 338 12.4.2 Building Owner Manuals and Building Logbooks 339 12.4.3 Display Energy Certificates (DECs) 339 12.4.4 Air-Conditioning Reports 340 12.4.5 F-Gas Regulations 340 12.4.6 Indoor Air Pollutants 340 12.4.7 Prevention of Legionellosis 342 13 Emerging Technologies 343 13.1 Overview 343 13.2 Smart Ventilation 343 13.3 Smart Active Glazing 344 13.4 Cooling Technologies 345 13.4.1 Elasto-Caloric Refrigeration 345 13.4.2 Magneto-Caloric Refrigeration 347 13.4.3 Electro-Caloric Refrigeration 348 13.4.4 Baro-Caloric Refrigeration 349 13.4.5 New and Re-Emerging Refrigerants 349 13.5 Smart Tuneable Acoustic Insulation 350 13.6 Smart (Human Centric) Lighting Design 351 13.7 Active Botanical Air Filtration 351 13.8 Peak Lopping Thermal Mass 352 13.9 Smart Batteries 353 13.10 Smart Sensors and Meters 353 13.11 Smart Microgrids 355 13.12 Hydrogen 356 13.12.1 Methane Combustion Chemistry 356 13.12.2 Hydrogen Combustion Chemistry 356 13.12.3 Fuel Property Comparison 357 13.12.4 Fuel Substitution 357 14 Closing Remarks 359 Appendix A The Psychrometric Chart 361 Appendix B Refrigerant Thermodynamic Properties 363 Bibliography 367 Index 369

Show more

Our Price
£88.25
Elsewhere
£104.95
Save £16.70 (16%)
Ships from UK Estimated delivery date: 3rd Apr - 7th Apr from UK

Buy Together
+
Buy together with Conventional and Alternative Power Generation at a great price!
Buy Together
£178.98
Elsewhere Price
£198.20
You Save £19.22 (10%)

Product Description

Preface xiii Structure of the Book xv Notation xxi 1 Ambient Air1 1.1 Overview 1 Learning Outcomes 1 1.2 Why Ambient Air Is Important? 1 1.3 Air Composition 2 1.4 Gas Mixtures 3 1.4.1 Mixture Laws 3 1.4.2 Dalton's Law 4 1.4.3 Gibbs-Dalton Law 5 1.4.4 Ideal Gas Behaviour and the Equation of State 6 1.5 Air Thermodynamic and Transport Properties 7 1.5.1 Gas Density 7 1.5.2 Dynamic Viscosity 7 1.5.3 Specific Heat Capacity 9 1.5.4 Thermal Conductivity 10 1.5.5 Heat Transfer Coefficient 10 1.5.6 Combinations of Properties 11 1.6 Important Energy Concepts 12 1.6.1 First Law of Thermodynamics 12 1.6.2 Thermal Energy 13 1.6.3 Rate of Thermodynamic Work 14 1.6.4 Nonthermal Energy 14 1.6.5 Non-flow Conditions 15 1.6.6 Entropy 15 1.7 Worked Examples 16 1.8 Tutorial Problems 21 2 The Thermodynamics of the Human Machine and Thermal Comfort 25 2.1 Overview 25 Learning Outcomes 25 2.2 Thermal Comfort of Human Beings 26 2.3 Energy Balance of the Human Body 26 2.4 Metabolism ( M) and Physical Work ( W) 27 2.4.1 Latent Heat Loss 28 2.4.1.1 Heat Loss by Perspiration 28 2.4.1.2 Heat Loss by Respiration 29 2.4.2 Sensible Heat Loss 29 2.4.2.1 Heat Loss by Conduction 29 2.4.2.2 Heat Loss by Convection 30 2.4.2.3 Heat Loss by Radiation 30 2.5 Optimum Comfort Temperature 31 2.6 Estimation of Thermal Comfort 31 2.7 Worked Examples 33 2.8 Tutorial Problems 41 3 Ventilation 45 3.1 Overview 45 Learning Outcomes 45 3.2 Concentrations, Contaminants, and the Decay Equation 46 3.2.1 Concentrations 46 3.2.2 The Decay Equation 47 3.3 Natural Ventilation 48 3.3.1 Stack Effect Ventilation 48 3.3.2 Wind Effect Ventilation 50 3.3.3 Combined Wind and Stack Effect Ventilation 51 3.3.4 Infiltration 52 3.4 Mechanical Ventilation 52 3.5 Fan Types and Selection 53 3.5.1 Selection of Fans 54 3.6 Duct Sizing and Fan Matching 56 3.6.1 Duct Pressure Losses 56 3.6.2 Selecting Duct Sizes 57 3.6.3 Fan Sizing 60 3.6.4 Fan-System Characteristics and Matching 61 3.6.5 Fan Laws 62 3.7 Worked Examples 63 3.8 Tutorial Problems 73 4 Psychrometry and Air Conditioning 75 4.1 Overview 75 Learning Outcomes 75 4.2 Psychrometric Properties 75 4.2.1 Pressure 75 4.2.2 Temperature 76 4.2.3 Water Content 76 4.2.4 Condensation 77 4.2.5 Energy Content 77 4.2.6 Mass Flow and Volume 78 4.3 The Psychrometric Chart 78 4.4 Air-Conditioning Processes 80 4.5 Air-Conditioning Cycles 86 4.5.1 Air-Conditioning Plant Variations 87 4.6 Worked Examples 91 4.7 Tutorial Problems 103 5 The Building Envelope 107 5.1 Overview 107 Learning Outcomes 107 5.2 Variation in Meteorological Conditions 107 5.2.1 Temperature and Humidity 108 5.2.2 Wind 108 5.2.3 Solar Irradiation 108 5.3 Heat Transfer 109 5.3.1 Conduction 109 5.3.2 Convection 111 5.3.3 Radiation 112 5.4 Solar Irradiation 113 5.4.1 Solar Time 114 5.4.2 Solar Angles 115 5.4.3 Surface Irradiation 117 5.5 Heat Losses/Gains Across the Envelope 118 5.5.1 Opaque Elements, i.e. Walls, Doors, Roofs, Floors, and Cavities 118 5.5.2 Transparent Elements, i.e. Windows, Roof Lights, Light Wells, Atria 119 5.5.3 Unsteady State Heat Transfer 122 5.6 Moisture and Air Transfer 125 5.6.1 Water Vapour Generation and Control 125 5.6.2 Vapour Pressure Gradients and Moisture Transfer 125 5.6.3 Prediction of Interstitial Building Fabric Condensation 126 5.6.4 Air Transfer 127 5.7 Internal Heat Gains 128 5.8 Worked Examples 128 5.9 Tutorial Problems 139 6 Refrigeration and Heat Pumps 143 6.1 Overview 143 Learning Outcomes 143 6.2 Choice of Refrigerants 144 6.2.1 Choice of Refrigerant for Vapour Compression Systems 146 6.2.2 Choice of Refrigerant-Absorbent Pairings for Vapour Absorption Systems 147 6.3 Heat Pump, Refrigeration, and Vapour Compression Cycles 147 6.3.1 Carnot Cycle 149 6.3.2 Ideal Vapour Compression Refrigeration Cycle 150 6.3.3 Practical Vapour Compression Refrigeration Cycle 151 6.3.4 Irreversibilities in Vapour Compression Refrigeration Cycles 152 6.3.5 Multistage-Vapour Compression Refrigeration 152 6.3.6 Multipurpose Refrigeration Systems with a Single Compressor 154 6.4 Absorption Refrigeration 155 6.4.1 Thermodynamic analysis 157 6.5 Adsorption Refrigeration 159 6.6 Stirling Cycle Refrigeration 159 6.7 Reverse Brayton-Air Refrigeration Cycle 162 6.8 Steam Jet Refrigeration Cycle 163 6.9 Thermoelectric Refrigeration 165 6.10 Thermoacoustic Refrigeration 166 6.11 Worked Examples 167 6.12 Tutorial Problems 179 7 Acoustic Factors 185 7.1 Overview 185 Learning Outcomes 185 7.2 The Human Ear 185 7.3 SoundWaves 187 7.3.1 Wave Motion 187 7.3.2 Wave Characteristics 189 7.4 Power, Intensity, and Pressure 190 7.4.1 The Bel 190 7.4.2 Sound Levels 190 7.4.2.1 Sound Power Level (LW) 190 7.4.2.2 Sound Intensity Level (LI ) 191 7.4.2.3 Sound Pressure Level (Lp) 191 7.4.2.4 Sound-Level Interrelationships 192 7.5 Laws of Sound Combination 193 7.6 Sound Propagation 193 7.6.1 Sound Attenuation 194 7.7 Sound Fields 199 7.7.1 Free Field 200 7.7.2 Diffuse Field 200 7.7.3 Far-Field 201 7.7.4 Near Field 201 7.8 Acoustic Pollution or Noise 201 7.8.1 Effect on Humans 202 7.8.2 Noise Standards 202 7.9 Worked Examples 203 7.10 Tutorial Problems 208 8 Visual Factors 211 8.1 Overview 211 Learning Outcomes 211 8.2 The Human Eye 211 8.3 Light Sources and Receivers 212 8.4 Laws of Illumination 215 8.5 Lamp Types 217 8.5.1 Light-Emitting Diodes (LEDs) 218 8.5.2 Gas/Vapour Discharge Lamps 218 8.5.2.1 Tubular Fluorescents 218 8.5.2.2 Metal Vapour/Metal Halide Lamps 218 8.5.2.3 Sodium Lamps 219 8.5.3 Incandescent Lamps 220 8.5.3.1 Tungsten Filament 220 8.5.3.2 Tungsten Halogen Lamps 220 8.5.4 Luminous Efficacy 221 8.6 Luminaires and Directional Control 222 8.6.1 Reflection 222 8.6.2 Refraction 222 8.6.3 Diffusion 223 8.6.4 Directional Performance Ratios 223 8.6.5 Lumen Method 224 8.6.6 Glare 225 8.7 Worked Examples 226 8.8 Tutorial Problems 232 9 Cleaning the Air 235 9.1 Overview 235 Learning Outcomes 235 9.2 Concentration and Exposure 236 9.2.1 Concentration Conversions 236 9.2.2 Pollutant Exposure 236 9.3 Particulate Pollution 236 9.3.1 Nature of Particulates 236 9.3.2 Stokes Law and Terminal Velocity 237 9.4 Principles of Particulate Collection 240 9.4.1 Collection Surfaces 240 9.4.2 Collection Devices 241 9.4.3 Fractional Collection Efficiency 242 9.5 Control Technologies 242 9.5.1 Gravity Settlers 243 9.5.1.1 Model 1: Unmixed Flow Model 243 9.5.1.2 Model 2: Well-Mixed Flow Model 244 9.5.2 Centrifugal Separators or Cyclones 246 9.5.3 Electrostatic Precipitators (ESPs) 250 9.5.4 Fabric Filters 254 9.6 Non-particulate Pollutants 257 9.6.1 Oxides of Nitrogen (NOx, NO, NO2) 257 9.6.2 Ozone (O3) 257 9.6.3 Volatile Organic Compounds (VOCs) 258 9.6.4 Radon 258 9.6.5 Carbon Monoxide (CO) 258 9.6.6 Micro-organisms 259 9.7 Principles of Non-particulate Collection 259 9.7.1 Adsorption 259 9.7.2 Ultraviolet Technologies 259 9.7.3 Plasma Cleaning 260 9.8 Pressure Drop Considerations 260 9.9 Worked Examples 261 9.10 Tutorial Problems 268 10 Solar Energy Applications 271 10.1 Overview 271 Learning Outcomes 271 10.2 Solar Thermal Collector Technologies 271 10.2.1 Flat-Plate Glazed Collectors 271 10.2.2 Evacuated Tube Collectors 272 10.2.3 Solar Thermal Collector Efficiency (etac) 273 10.2.4 Solar Thermal Air Heaters 275 10.3 Solar Electricity 276 10.3.1 Photovoltaic (PV) Cells 277 10.3.2 PV Cell Shading 278 10.3.3 PV Energy Production 279 10.4 Ground-Based Energy Sources 279 10.4.1 Direct Ground Heating/Cooling 281 10.4.2 Ground Source Heat Pumps (GSHPs) 281 10.5 Energy Storage 281 10.5.1 Thermal Energy Storage 281 10.5.1.1 Sensible Heat Storage 282 10.5.1.2 Latent Heat Storage 283 10.5.2 Electrical Energy Storage 284 10.5.3 Battery Technologies 286 10.6 Daylighting 288 10.7 Worked Examples 289 10.8 Tutorial Problems 297 11 Measurements and Monitoring 301 11.1 Overview 301 Learning Outcomes 301 11.2 Compositional Parameters 302 11.2.1 Gaseous Concentration Measurement 302 11.2.1.1 Matter-Photon Interaction 302 11.2.2 Particulates Concentration Measurement 303 11.3 Physical Parameters 303 11.3.1 Pressure Measurement Principles 303 11.3.2 Temperature Measurement Principles 304 11.3.2.1 Resistance Thermometers 306 11.3.2.2 Thermocouples 306 11.3.2.3 Thermistor 307 11.3.3 Humidity Measurement Principles 309 11.3.3.1 Wet- and Dry-Bulb Hygrometer (Relative humidity) 310 11.3.4 Velocity Measurement Principles 311 11.3.4.1 Differential Pressure Meters 311 11.3.4.2 Anemometers 312 11.3.4.3 Optical Methods 313 11.4 Visual and Aural Parameters 314 11.4.1 Light Measurement Principles 314 11.4.2 Sound Measurement Principles 314 11.5 Utility Measurement and Metering 315 11.5.1 Electricity Metering 315 11.5.2 Gas Metering 316 11.5.3 Water Flow Metering 317 11.5.4 Heat Metering 320 11.5.5 Energy and Building Management Systems 321 11.6 Worked Examples 321 11.7 Tutorial Problems 327 12 Drivers, Standards, and Methodologies 331 12.1 Overview 331 Learning Outcomes 331 12.2 Compliance Considerations 332 12.2.1 Energy Performance of Buildings (EPB) Standards and the Energy Performance of Buildings Directive (EPBD) 332 12.2.2 UK Building Regulations and Approved Documents 333 12.2.3 SAP, RdSAP, and SBEM (UK) 333 12.2.4 Energy Performance Certificates (EPCs) 334 12.2.5 Ecodesign and Energy Related Products (ErP) 335 12.2.6 Lamp and Lighting Standards 335 12.2.7 Noise Standards 335 12.2.8 Indoor Environmental Design Parameters 336 12.3 External Certification and Recognition 336 12.3.1 BREEAM 336 12.3.2 Passivhaus 337 12.3.3 WELL Standards 338 12.3.4 LEED Leadership in Energy and Environmental Design 338 12.4 Operational Considerations 338 12.4.1 Post Occupancy Evaluation 338 12.4.2 Building Owner Manuals and Building Logbooks 339 12.4.3 Display Energy Certificates (DECs) 339 12.4.4 Air-Conditioning Reports 340 12.4.5 F-Gas Regulations 340 12.4.6 Indoor Air Pollutants 340 12.4.7 Prevention of Legionellosis 342 13 Emerging Technologies 343 13.1 Overview 343 13.2 Smart Ventilation 343 13.3 Smart Active Glazing 344 13.4 Cooling Technologies 345 13.4.1 Elasto-Caloric Refrigeration 345 13.4.2 Magneto-Caloric Refrigeration 347 13.4.3 Electro-Caloric Refrigeration 348 13.4.4 Baro-Caloric Refrigeration 349 13.4.5 New and Re-Emerging Refrigerants 349 13.5 Smart Tuneable Acoustic Insulation 350 13.6 Smart (Human Centric) Lighting Design 351 13.7 Active Botanical Air Filtration 351 13.8 Peak Lopping Thermal Mass 352 13.9 Smart Batteries 353 13.10 Smart Sensors and Meters 353 13.11 Smart Microgrids 355 13.12 Hydrogen 356 13.12.1 Methane Combustion Chemistry 356 13.12.2 Hydrogen Combustion Chemistry 356 13.12.3 Fuel Property Comparison 357 13.12.4 Fuel Substitution 357 14 Closing Remarks 359 Appendix A The Psychrometric Chart 361 Appendix B Refrigerant Thermodynamic Properties 363 Bibliography 367 Index 369

Show more
Product Details
EAN
9781119722854
ISBN
1119722853
Publisher
Dimensions
17.1 x 25.2 x 2.7 centimeters (0.83 kg)

Table of Contents

Preface xiii

Structure of the Book xv

Notation xxi

1 Ambient Air1

1.1 Overview 1

1.2 Why Ambient Air Is Important? 1

1.3 Air Composition 2

1.4 Gas Mixtures 3

1.5 Air Thermodynamic and Transport Properties 7

1.6 Important Energy Concepts 12

1.7 Worked Examples 16

1.8 Tutorial Problems 21

2 The Thermodynamics of the Human Machine and Thermal Comfort 25

2.1 Overview 25

2.2 Thermal Comfort of Human Beings 26

2.3 Energy Balance of the Human Body 26

2.4 Metabolism (M) and Physical Work (W) 27

2.5 Optimum Comfort Temperature 31

2.6 Estimation of Thermal Comfort 31

2.7 Worked Examples 33

2.8 Tutorial Problems 41

3 Ventilation 45

3.1 Overview 45

3.2 Concentrations, Contaminants, and the Decay Equation 46

3.3 Natural Ventilation 48

3.4 Mechanical Ventilation 52

3.5 Fan Types and Selection 53

3.6 Duct Sizing and Fan Matching 56

3.7 Worked Examples 63

3.8 Tutorial Problems 73

4 Psychrometry and Air Conditioning 75

4.1 Overview 75

4.2 Psychrometric Properties 75

4.3 The Psychrometric Chart 78

4.4 Air-Conditioning Processes 80

4.5 Air-Conditioning Cycles 86

4.6 Worked Examples 91

4.7 Tutorial Problems 103

5 The Building Envelope 107

5.1 Overview 107

5.2 Variation in Meteorological Conditions 107

5.3 Heat Transfer 109

5.4 Solar Irradiation 113

5.5 Heat Losses/Gains Across the Envelope 118

5.6 Moisture and Air Transfer 125

5.7 Internal Heat Gains 128

5.8 Worked Examples 128

5.9 Tutorial Problems 139

6 Refrigeration and Heat Pumps 143

6.1 Overview 143

6.2 Choice of Refrigerants 144

6.3 Heat Pump, Refrigeration, and Vapour Compression Cycles 147

6.4 Absorption Refrigeration 155

6.5 Adsorption Refrigeration 159

6.6 Stirling Cycle Refrigeration 159

6.7 Reverse Brayton–Air Refrigeration Cycle 162

6.8 Steam Jet Refrigeration Cycle 163

6.9 Thermoelectric Refrigeration 165

6.10 Thermoacoustic Refrigeration 166

6.11 Worked Examples 167

6.12 Tutorial Problems 179

7 Acoustic Factors 185

7.1 Overview 185

7.2 The Human Ear 185

7.3 SoundWaves 187

7.4 Power, Intensity, and Pressure 190

7.5 Laws of Sound Combination 193

7.6 Sound Propagation 193

7.7 Sound Fields 199

7.8 Acoustic Pollution or Noise 201

7.9 Worked Examples 203

7.10 Tutorial Problems 208 

8 Visual Factors 211

8.1 Overview 211

8.2 The Human Eye 211

8.3 Light Sources and Receivers 212

8.4 Laws of Illumination 215

8.5 Lamp Types 217

8.6 Luminaires and Directional Control 222

8.7 Worked Examples 226

8.8 Tutorial Problems 232

9 Cleaning the Air 235

9.1 Overview 235

9.2 Concentration and Exposure 236

9.3 Particulate Pollution 236

9.4 Principles of Particulate Collection 240

9.5 Control Technologies 242

9.6 Non-particulate Pollutants 257

9.7 Principles of Non-particulate Collection 259

9.8 Pressure Drop Considerations 260

9.9 Worked Examples 261

9.10 Tutorial Problems 268

10 Solar Energy Applications 271

10.1 Overview 271

10.2 Solar Thermal Collector Technologies 271

10.3 Solar Electricity 276

10.4 Ground-Based Energy Sources 279

10.5 Energy Storage 281

10.6 Daylighting 288

10.7 Worked Examples 289

10.8 Tutorial Problems 297

11 Measurements and Monitoring 301

11.1 Overview 301

11.2 Compositional Parameters 302

11.3 Physical Parameters 303

11.4 Visual and Aural Parameters 314

11.5 Utility Measurement and Metering 315

11.6 Worked Examples 321

11.7 Tutorial Problems 327

12 Drivers, Standards, and Methodologies 331

12.1 Overview 331

Learning Outcomes 331

12.2 Compliance Considerations 332

12.3 External Certification and Recognition 336

12.4 Operational Considerations 338

13 Emerging Technologies 343

13.1 Overview 343

13.2 Smart Ventilation 343

13.3 Smart Active Glazing 344

13.4 Cooling Technologies 345

13.5 Smart Tuneable Acoustic Insulation 350

13.6 Smart (Human Centric) Lighting Design 351

13.7 Active Botanical Air Filtration 351

13.8 Peak Lopping Thermal Mass 352

13.9 Smart Batteries 353

13.10 Smart Sensors and Meters 353

13.11 Smart Microgrids 355

13.12 Hydrogen 356

14 Closing Remarks 359

Appendix A The Psychrometric Chart 361

Appendix B Refrigerant Thermodynamic Properties 363

Bibliography 367

Index 369

About the Author

Professor Tarik Al-Shemmeri is an Independent Consultant and a Visiting Lecturer to the School of Chemical Engineering at the University of Birmingham, UK. He has lectured, researched and published many research papers and text books in the area of thermo-fluids, renewable energy, and power generation.

Neil Packer is a Chartered Engineer who has taught Mechanical Engineering to students in the Higher Education sector for over 25 years. He has acted as an Energy Consultant on a range of low carbon projects in the UK, mainland Europe, and North Africa.

Show more
Review this Product
Ask a Question About this Product More...
 
Item ships from and is sold by Fishpond World Ltd.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.