Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Artificial Intelligence and ­Machine Learning for Edge ­Computing
By Rajiv Pandey (Edited by), Sunil Kumar Khatri (Edited by), Neeraj Kumar Singh

Rating
Format
Paperback, 516 pages
Published
United States, 1 April 2022

Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms.

Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering.


Our Price
£119
Elsewhere
£131.00
Save £12.00 (9%)
Ships from Australia Estimated delivery date: 30th May - 9th Jun from Australia
Free Shipping Worldwide

Buy Together
+
Buy together with Strategic System Assurance and Business Analytics at a great price!
Buy Together
£267
Elsewhere Price
£278.99
You Save £11.99 (4%)

Product Description

Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms.

Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering.

Product Details
EAN
9780128240540
ISBN
0128240547
Publisher
Dimensions
27.9 x 21.6 x 2.6 centimeters (1.18 kg)

Table of Contents

Part 1: AI and Machine Learning
1. Artificial Intelligence
2. Machine Learning
3. Regression Analysis
4. Bayesian Statistics
5. Learning Theory
6. Supervised Learning
7. Unsupervised Learning
8. Reinforcement Learning
9. Instance Based Learning and Feature Engineering

Part 2: Data Science and Predictive Analysis
10. Introduction to Data Science and Analysis
11. Linear Algebra, Statistics, Probability, Hypothesis and Inference, Gradient Descent
12. Predictive Analysis

Part 3: Edge Computing
13. Distributed Computing - Cloud to fog to Edge
14. Edge Computing
15. Integrating AI with Edge Computing
16. Machine learning integration with Edge Computing
17. Applying AI/Ml at the edge

About the Author

Dr. Rajiv Pandey is a Faculty member at Amity Institute of Information Technology, Amity University, Uttar Pradesh, Lucknow Campus, India. He possesses a diverse background experience of around 35 years to include 15 years in industry and 20 years of academic research and instruction. His research interests include blockchain and crypto currencies, information security, semantic web provenance, Cloud computing, Big Data, and Data Analytics. Dr. Pandey is a Senior Member of IEEE and has been a session chair and technical committee member for various IEEE conferences. He has been on the technical committees of various government and private universities, and is the editor of Quantum Computing: A Shift from Bits to Qubits from Springer, Data Modelling and Analytics for the Internet of Medical Things from CRC Press/Taylor & Francis, and Artificial Intelligence and Machine Learning for Edge Computing from AP/Elsevier.

Dr. Sunil Kumar Khatri is a Professor at Amity University Tashkent, Uzbekistan, and has been conferred with an Honorary Visiting Professorship by the University of Technology, Sydney, Australia. He is a Fellow of IETE, Senior Life Member of CSI, IEEE, IASCSIT, and Member of IAENG. Dr. Khatri is Editor of International Journal of Systems Assurance, Engineering and Management, Springer Verlag, and he is on the Editorial Board of several international journals. He has published ten guest edited special issues of international journals, and eleven patents filed. His areas of research are Artificial Intelligence, Software Reliability and Testing, and Data Analytics. He is the co-Edtior of Strategic System Assurance and Business Analytics, forthcoming in 2020 from Springer, and co-Author of A Sum-of-Product Based Multiplication Approach for FIR Filters and DFT from Lambert Academic Publishing. Dr. Neeraj Kumar Singh is an Associate Professor of Computer Science at INPT-ENSEEIHT and member of the ACADIE team at IRIT. Before joining INPT, Dr. Singh worked as a research fellow and team leader at the Centre for Software Certification (McSCert), McMaster University, Canada. He worked as a research associate in the Department of Computer Science at University of York, UK. He also worked as a research scientist at the INRIA Nancy Grand Est Centre, France, where he has received his Ph.D. in Computer Science. He leads his research in the area of theory and practice of rigorous software engineering and formal methods to design and implement safe, secure, and dependable critical systems. He is an active participant in the “Pacemaker Grand Challenge.” Dr. Singh is the author/editor of Quantum Computing: A Shift from Bits to Qubits and Using Event-B for Critical Device Software Systems from Springer, Essential Computer Science: A Programmer’s Guide to Foundational Concepts and Industrial System Engineering for Drones from APress, and System on Chip Interfaces for Low Power Design from Morgan Kaufmann/Elsevier.

Dr. Parul Verma is working as a Faculty member at Amity Institute of Information Technology, Amity University, Uttar Pradesh, Lucknow, India. Her research interests are Natural Language Processing, Web Mining, Deep Mining, Semantic Web, Edge Computing and IoT. She has published and presented almost 30 papers in Scopus and other indexed National and International Journals and Conferences. She has been actively involved in research being as a supervisor to Research Scholars and Post Graduate students. She is also a member of many International and National bodies like ACM (Association for Computing Machinery), IAENG (International Association of Engineers), IACSIT (International Association of Computer Science and Information Technology), Internet Society and CSI (Computer Society of India).

Show more
Review this Product
Ask a Question About this Product More...
 
Look for similar items by category
Item ships from and is sold by Fishpond Retail Limited.

Back to top
We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.