PrologueA Brief HistoryReductionism vs. HolismKey FeaturesContact MePART 1: NUMERICAL TECHNIQUES1. IntroductionWhat Is Scientific ComputingWhat is Functional ProgrammingWho Is This Book ForStructure of the BookInstallationOption 1: Install from OPAMOption 2: Pull from Docker HubOption 3: Pin the Dev-RepoOption 4: Compile from SourceCBLAS/LAPACKE DependencyInteracting with OwlUsing ToplevelUsing NotebookUsing Owl-JupyterSummary2. ConventionsPure vs. ImpureNdarray vs. ScalarInfix OperatorsOperator ExtensionModule StructuresNumber and PrecisionPolymorphic FunctionsModule ShortcutsType Casting3. VisualisationCreate PlotsSpecificationSubplotsMultiple LinesLegendDrawing PatternsLine PlotScatter PlotStairs PlotBox PlotStem PlotArea PlotHistogram & CDF PlotLog Plot3D PlotAdvanced Statistical PlotSummaryReferences4. Mathematical FunctionsBasic FunctionsBasic Unary Math FunctionsBasic Binary FunctionsExponential and Logarithmic FunctionsTrigonometric FunctionsOther Math FunctionsSpecial FunctionsAiry FunctionsBessel FunctionsElliptic FunctionsGamma FunctionsBeta FunctionsStruve FunctionsZeta FunctionsError FunctionsIntegral FunctionsFactorialsInterpolation and ExtrapolationIntegrationUtility FunctionsSummary5. Statistical FunctionsRandom VariablesDiscrete Random VariablesContinuous Random VariablesDescriptive StatisticsOrder StatisticsSpecial DistributionGamma DistributionBeta DistributionChi-Square DistributionStudent-t DistributionCauchy DistributionMultiple VariablesSamplingHypothesis TestsTheoryGaussian Distribution in Hypothesis TestingTwo-Sample InferencesGoodness-of-fit TestsNon-parametric StatisticsCovariance and CorrelationsAnalysis of VarianceSummary6. N-Dimensional ArraysNdarray TypesCreation FunctionsProperties FunctionsMap FunctionsFold FunctionsScan FunctionsComparison FunctionsVectorised FunctionsIteration FunctionsManipulation FunctionsSerialisationTensorsSummaryReferences7. Slicing and BroadcastingSlicingBasic SlicingFancy SlicingConventions in DefinitionExtended OperatorsAdvanced UsageBroadcastingWhat Is Broadcasting?Shape ConstraintsSupported OperationsSlicing in NumPy and JuliaInternal MechanismSummary8. Linear AlgebraVectors and MatricesCreating MatricesAccessing ElementsIterate, Map, Fold, and FilterMath OperationsGaussian EliminationLU FactorisationInverse and TransposeVector SpacesRank and BasisOrthogonalitySolving Ax = bMatrix SensitivityDeterminantsEigenvalues and EigenvectorsSolving
Show morePrologueA Brief HistoryReductionism vs. HolismKey FeaturesContact MePART 1: NUMERICAL TECHNIQUES1. IntroductionWhat Is Scientific ComputingWhat is Functional ProgrammingWho Is This Book ForStructure of the BookInstallationOption 1: Install from OPAMOption 2: Pull from Docker HubOption 3: Pin the Dev-RepoOption 4: Compile from SourceCBLAS/LAPACKE DependencyInteracting with OwlUsing ToplevelUsing NotebookUsing Owl-JupyterSummary2. ConventionsPure vs. ImpureNdarray vs. ScalarInfix OperatorsOperator ExtensionModule StructuresNumber and PrecisionPolymorphic FunctionsModule ShortcutsType Casting3. VisualisationCreate PlotsSpecificationSubplotsMultiple LinesLegendDrawing PatternsLine PlotScatter PlotStairs PlotBox PlotStem PlotArea PlotHistogram & CDF PlotLog Plot3D PlotAdvanced Statistical PlotSummaryReferences4. Mathematical FunctionsBasic FunctionsBasic Unary Math FunctionsBasic Binary FunctionsExponential and Logarithmic FunctionsTrigonometric FunctionsOther Math FunctionsSpecial FunctionsAiry FunctionsBessel FunctionsElliptic FunctionsGamma FunctionsBeta FunctionsStruve FunctionsZeta FunctionsError FunctionsIntegral FunctionsFactorialsInterpolation and ExtrapolationIntegrationUtility FunctionsSummary5. Statistical FunctionsRandom VariablesDiscrete Random VariablesContinuous Random VariablesDescriptive StatisticsOrder StatisticsSpecial DistributionGamma DistributionBeta DistributionChi-Square DistributionStudent-t DistributionCauchy DistributionMultiple VariablesSamplingHypothesis TestsTheoryGaussian Distribution in Hypothesis TestingTwo-Sample InferencesGoodness-of-fit TestsNon-parametric StatisticsCovariance and CorrelationsAnalysis of VarianceSummary6. N-Dimensional ArraysNdarray TypesCreation FunctionsProperties FunctionsMap FunctionsFold FunctionsScan FunctionsComparison FunctionsVectorised FunctionsIteration FunctionsManipulation FunctionsSerialisationTensorsSummaryReferences7. Slicing and BroadcastingSlicingBasic SlicingFancy SlicingConventions in DefinitionExtended OperatorsAdvanced UsageBroadcastingWhat Is Broadcasting?Shape ConstraintsSupported OperationsSlicing in NumPy and JuliaInternal MechanismSummary8. Linear AlgebraVectors and MatricesCreating MatricesAccessing ElementsIterate, Map, Fold, and FilterMath OperationsGaussian EliminationLU FactorisationInverse and TransposeVector SpacesRank and BasisOrthogonalitySolving Ax = bMatrix SensitivityDeterminantsEigenvalues and EigenvectorsSolving
Show more![]() |
Ask a Question About this Product More... |
![]() |