Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Advanced Python Programming
Build high performance, concurrent, and multi-threaded apps with Python using proven design patterns

Rating
Format
Paperback, 672 pages
Published
United Kingdom, 1 February 2019

Create distributed applications with clever design patterns to solve complex problems

Key Features
  • Set up and run distributed algorithms on a cluster using Dask and PySpark
  • Master skills to accurately implement concurrency in your code
  • Gain practical experience of Python design patterns with real-world examples
Book Description

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing.

By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems.

This Learning Path includes content from the following Packt products:

  • Python High Performance - Second Edition by Gabriele Lanaro
  • Mastering Concurrency in Python by Quan Nguyen
  • Mastering Python Design Patterns by Sakis Kasampalis
What you will learn
  • Use NumPy and pandas to import and manipulate datasets
  • Achieve native performance with Cython and Numba
  • Write asynchronous code using asyncio and RxPy
  • Design highly scalable programs with application scaffolding
  • Explore abstract methods to maintain data consistency
  • Clone objects using the prototype pattern
  • Use the adapter pattern to make incompatible interfaces compatible
  • Employ the strategy pattern to dynamically choose an algorithm
Who this book is for

This Learning Path is specially designed for Python developers who want to build high-performance applications and learn about single core and multi-core programming, distributed concurrency, and Python design patterns. Some experience with Python programming language will help you get the most out of this Learning Path.

Show more

Our Price
£26.25
Ships from UK Estimated delivery date: 2nd May - 6th May from UK

Buy Together
+
Buy together with Python at a great price!
Buy Together
£84.91
Elsewhere Price
£88.24
You Save £3.33 (4%)

Product Description

Create distributed applications with clever design patterns to solve complex problems

Key Features Book Description

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing.

By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems.

This Learning Path includes content from the following Packt products:

What you will learn Who this book is for

This Learning Path is specially designed for Python developers who want to build high-performance applications and learn about single core and multi-core programming, distributed concurrency, and Python design patterns. Some experience with Python programming language will help you get the most out of this Learning Path.

Show more
Product Details
EAN
9781838551216
ISBN
1838551212
Dimensions
23.5 x 19.1 x 3.4 centimeters (1.13 kg)

Table of Contents

Table of Contents

  • Benchmarking and Profiling
  • Pure Python Optimizations
  • Fast Array Operations with NumPy and Pandas
  • C Performance with Cython
  • Exploring Compilers
  • Implementing Concurrency
  • Parallel Processing
  • Advanced Introduction to Concurrent and Parallel Programming
  • Amdahl's Law
  • Working with Threads in Python
  • Using the with Statement in Threads
  • Concurrent Web Requests
  • Working with Processes in Python
  • Reduction Operators in Processes
  • Concurrent Image Processing
  • Introduction to Asynchronous Programming
  • Implementing Asynchronous Programming in Python
  • Building Communication Channels with asyncio
  • Deadlocks
  • Starvation
  • Race Conditions
  • The Global Interpreter Lock
  • The Factory Pattern
  • The Builder Pattern
  • Other Creational Patterns
  • The Adapter Pattern
  • The Decorator Pattern
  • The Bridge Pattern
  • The Facade Pattern
  • Other Structural Patterns
  • The Chain of Responsibility Pattern
  • The Command Pattern
  • The Observer Pattern
  • About the Author

    Dr. Gabriele Lanaro is passionate about good software and is the author of the chemlab and chemview open source packages. His interests span machine learning, numerical computing visualization, and web technologies. In 2013, he authored the first edition of the book High Performance Python Programming. He has been conducting research to study the formation and growth of crystals using medium and large-scale computer simulations. In 2017, he obtained his PhD in theoretical chemistry. Quan Nguyen is a Python enthusiast and data scientist. Currently, he works as a data analysis engineer at Micron Technology, Inc. With a strong background in mathematics and statistics, Quan is interested in the fields of scientific computing and machine learning. With data analysis being his focus, Quan also enjoys incorporating technology automation into everyday tasks through programming. Quan's passion for Python programming has led him to be heavily involved in the Python community. He started as a primary contributor for the Python for Scientists and Engineers book and various open source projects on GitHub. Quan is also a writer for the Python software foundation and an occasional content contributor for DataScience.com (part of Oracle). Sakis Kasampalis is a software engineer living in the Netherlands. He is not dogmatic about particular programming languages and tools; his principle is that the right tool should be used for the right job. One of his favorite tools is Python because he finds it very productive. Sakis has also technically reviewed the Mastering Object-oriented Python and Learning Python Design Patterns books, both published by Packt Publishing.

    Show more
    Review this Product
    Ask a Question About this Product More...
     
    Look for similar items by category
    Item ships from and is sold by Fishpond World Ltd.

    Back to top
    We use essential and some optional cookies to provide you the best shopping experience. Visit our cookies policy page for more information.